172 research outputs found

    Concurrent Knowledge-Extraction in the Public-Key Model

    Get PDF
    Knowledge extraction is a fundamental notion, modelling machine possession of values (witnesses) in a computational complexity sense. The notion provides an essential tool for cryptographic protocol design and analysis, enabling one to argue about the internal state of protocol players without ever looking at this supposedly secret state. However, when transactions are concurrent (e.g., over the Internet) with players possessing public-keys (as is common in cryptography), assuring that entities ``know'' what they claim to know, where adversaries may be well coordinated across different transactions, turns out to be much more subtle and in need of re-examination. Here, we investigate how to formally treat knowledge possession by parties (with registered public-keys) interacting over the Internet. Stated more technically, we look into the relative power of the notion of ``concurrent knowledge-extraction'' (CKE) in the concurrent zero-knowledge (CZK) bare public-key (BPK) model.Comment: 38 pages, 4 figure

    Number Theoretic Transform and Its Applications in Lattice-based Cryptosystems: A Survey

    Full text link
    Number theoretic transform (NTT) is the most efficient method for multiplying two polynomials of high degree with integer coefficients, due to its series of advantages in terms of algorithm and implementation, and is consequently widely-used and particularly fundamental in the practical implementations of lattice-based cryptographic schemes. Especially, recent works have shown that NTT can be utilized in those schemes without NTT-friendly rings, and can outperform other multiplication algorithms. In this paper, we first review the basic concepts of polynomial multiplication, convolution and NTT. Subsequently, we systematically introduce basic radix-2 fast NTT algorithms in an algebraic way via Chinese Remainder Theorem. And then, we elaborate recent advances about the methods to weaken restrictions on parameter conditions of NTT. Furthermore, we systematically introduce how to choose appropriate strategy of NTT algorithms for the various given rings. Later, we introduce the applications of NTT in the lattice-based cryptographic schemes of NIST post-quantum cryptography standardization competition. Finally, we try to present some possible future research directions

    Concurrent/Resettable Zero-Knowledge With Concurrent Soundness in the Bare Public-Key Model and Its Applications

    Get PDF
    In this work, we investigate concurrent knowledge-extraction (CKE) and concurrent non-malleability (CNM) for concurrent (and stronger, resettable) ZK protocols in the bare public-key model. We formulate, driven by concrete attacks, and achieve CKE for constant-round concurrent/resettable arguments in the BPK model under standard polynomial assumptions. We get both generic and practical implementations. Here, CKE is a new concurrent verifier security that is strictly stronger than concurrent soundness in public-key model. We investigate, driven by concrete attacks, and clarify the subtleties in formulating CNM in the public-key model. We then give a new (augmented) CNM formulation in the public-key model and a construction of CNMZK in the public-key model satisfying the new CNM formulation

    New Notions of Soundness and Simultaneous Resettability in the Public-Key Model

    Get PDF
    I n this paper, some new notions of soundness in public-key model are presented. We clarify the relationships among our new notions of soundness and the original 4 soundness notions presented by Micali and Reyzin. Our new soundness notions also characterize a new model for ZK protocols in public key model: weak soundness model. By ``weak” we mean for each common input x selected by a malicious prover on the fly, x is used by the malicious prover at most a-priori bounded polynomial times. The weak soundness model just lies in between BPK model and UPK model. Namely, it is weaker than BPK model but stronger than UPK model. In the weak soundness model (also in the UPK model, since weak soundness model implies UPK model), we get a 3-round black-box rZK arguments with weak resettable soundness for NP. Note that simultaneous resettability is an important open problem in the field of ZK protocols. And Reyzin has proven that there are no ZK protocols with resettable soundness in the BPK model. It means that to achieve simultaneous resettability one needs to augment the BPK model in a reasonable fashion. Although Barak et al. [BGGL01] have proven that any language which has a black-box ZK arguments with resettable soundness is in BPP. It is the weak soundness that makes us to get simultaneous resettability. More interestingly, our protocols work in a somewhat ``parallel repetition” manner to reduce the error probability and the verifier indeed has secret information with respect to historical transcripts. Note that in general the error probability of such protocols can not be reduced by parallel repetition. [BIN97] At last, we give a 3-round non-black-box rZK arguments system with resettable soundness for NP in the preprocessing model in which a trusted third party is assumed. Our construction for such protocol is quite simple. Note that although the preprocessing model is quite imposing but it is still quite reasonable as indicated in [CGGM00]. For example, in many e-commerce setting a trusted third party is often assumed. The critical tools used in this paper are: verifiable pseudorandom functions, zap and complexity leveraging. To our knowledge, our protocols are also the second application of verifiable pseudorandom functions. The first application is the 3-round rZK arguments with one-time soundness for NP in the public-key model as indicated by Micali and Reyzin [MR01a]

    Aggregation of Gamma-Signatures and Applications to Bitcoin

    Get PDF
    Aggregate signature (AS) allows non-interactively condensing multiple individual signatures into a compact one. Besides the faster verification, it is useful to reduce storage and bandwidth, and is especially attractive for blockchain and cryptocurrency. In this work, we first demonstrate the subtlety of achieving AS from general groups, by a concrete attack that actually works against the natural implementations of AS based on almost all the variants of DSA and Schnorr’s. Then, we show that aggregate signature can be derived from the Γ-signature scheme proposed by Yao, et al. To the best of our knowledge, this is the first aggregate signature scheme from general elliptic curves without bilinear maps (in particular, the secp256k1 curve used by Bitcoin). The security of aggregate Γ-signature is proved based on a new assumption proposed and justified in this work, referred to as non-malleable discrete-logarithm (NMDL), which might be of independent interest and could find more cryptographic applications in the future. When applying the resultant aggregate Γ-signature to Bitcoin, the storage volume of signatures reduces about 49.8%, and the signature verification time can evenreduce about 72%. Finally, we specify in detail the application of the proposed AS scheme to Bitcoin, with the goal of maximizing performance and compatibility. We adopt a Merkle-Patricia tree based implementation, and the resulting system is also more friendly to segregated witness and provides better protection against transaction malleability attacks

    Identity-Concealed Authenticated Encryption and Key Exchange

    Get PDF
    Identity concealment and zero-round trip time (0-RTT) connection are two of current research focuses in the design and analysis of secure transport protocols, like TLS1.3 and Google\u27s QUIC, in the client-server setting. In this work, we introduce a new primitive for identity-concealed authenticated encryption in the public-key setting, referred to as {higncryption, which can be viewed as a novel monolithic integration of public-key encryption, digital signature, and identity concealment. We present the security definitional framework for higncryption, and a conceptually simple (yet carefully designed) protocol construction. As a new primitive, higncryption can have many applications. In this work, we focus on its applications to 0-RTT authentication, showing higncryption is well suitable to and compatible with QUIC and OPTLS, and on its applications to identity-concealed authenticated key exchange (CAKE) and unilateral CAKE (UCAKE). In particular, we make a systematic study on applying and incorporating higncryption to TLS. Of independent interest is a new concise security definitional framework for CAKE and UCAKE proposed in this work, which unifies the traditional BR and (post-ID) frameworks, enjoys composability, and ensures very strong security guarantee. Along the way, we make a systematically comparative study with related protocols and mechanisms including Zheng\u27s signcryption, one-pass HMQV, QUIC, TLS1.3 and OPTLS, most of which are widely standardized or in use

    Direct Constructions of Bidirectional Proxy Re-Encryption with Alleviated Trust in Proxy

    Get PDF
    In this work, we study (the direct constructions of) bidirectional proxy re-encryption (PRE) with alleviated trust in the proxy, specifically the master secret security (MSS) and the non-transitivity (NT) security, in the standard model, and achieve the following: 1. A multi-hop MSS-secure bidirectional PRE scheme with security against chosen plaintext attacks (CPA) in the standard model, where the ciphertext remains constant size regardless of how many times it has been re-encrypted. To the best of our knowledge, there exists previously no MSS-secure multi-hop bidirectional PRE scheme with constant size of ciphertexts (whether in the random oracle model or not). 2. A single-hop MSS-secure and non-transitive bidirectional PRE scheme with security against chosen ciphertext attacks (CCA) in the standard model. The CCA-secure scheme is based on the CPA-secure scheme, and particularly employs a new re-encryption key (REK) generation mechanism to which each user makes equal contributions, where a \emph{single} REK is used in both directions with the same proxy computation. Single-hop non-transitive bidirectional PRE schemes also enjoy better fine-grained delegate right control (against malicious proxy). The security analysis uses Coron\u27s technique [Coron, Crypto 2000], which particularly allows adaptive secret key corruption. Along the way, we also refine and clarify the security models for bidirectional PRE

    Half-Aggregation of Schnorr Signatures with Tight Reductions

    Get PDF
    An aggregate signature (AS) scheme allows an unspecified aggregator to compress many signatures into a short aggregation. AS schemes can save storage costs and accelerate verification. They are desirable for applications where many signatures need to be stored, transferred, or verified together, like blockchain systems, network routing, e-voting, and certificate chains. However, constructing AS schemes based on general groups, only requiring the hardness of the discrete logarithm problem, is quite tricky and has been a long-standing research question. Recently, Chalkias et al. (CT-RSA 2021) proposed a half-aggregate scheme for Schnorr signatures. We observe the scheme lacks a tight security proof and does not well support incremental aggregation, i.e., adding more signatures into a pre-existing aggregation. Chalkias et al. also presented an aggregate scheme for Schnorr signatures whose security can be tightly reduced to the security of Schnorr signatures in the random oracle model (ROM). However, the scheme is rather expensive and does not achieve half-aggregation. It is a fundamental question whether there exists half-aggregation of Schnorr signatures with tight reduction in the ROM, of both theoretical and practical interests. This work\u27s contributions are threefold. We first give a tight security proof for the scheme in CT-RSA 2021 in the ROM and the algebraic group model (AGM). Second, we provide a new half-aggregate scheme for Schnorr signatures that perfectly supports incremental aggregation, whose security also tightly reduces to Schnorr\u27s security in the AGM+ROM. Third, we present a Schnorr-based sequential aggregate signature (SAS) scheme that is tightly secure as Schnorr signature scheme in the ROM (without the AGM). Our work may pave the way for applying Schnorr aggregation in real-world cryptographic applications
    • …
    corecore